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Systematic renormalization in Hamiltonian light-front field theory: The massive generalization
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Hamiltonian light-front field theory can be used to solve for hadron states in QCD. To this end, a method has
been developed for systematic renormalization of Hamiltonian light-front field theories, with the hope of
applying the method to QCD. It assumed massless particles, so its immediate application to QCD is limited to
gluon states or states where quark masses can be neglected. This paper builds on the previous work by
including particle masses nonperturbatively, which is necessary for a full treatment of QCD. We show that
several subtle new issues are encountered when including masses nonperturbatively. The method with masses
is algebraically and conceptually more difficult; however, we focus on how the methods differ. We demon-
strate the method using massiyé theory in 5+1 dimensions, which has important similarities to QCD.
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[. INTRODUCTION its diagram structure is similar to QCD, which make it a
good perturbative development ground. It is straightforward

The use of a Hamiltonian light-front formalism may sim- to extend the method for massless theories developed in Ref.
plify the solution of quantum chromodynami¢®CD) by [1] to calculate QCD quantities for which particle masses are
allowing us to make a convergent expansion of hadron stateghimportant, such as the low-lying glueball spectiu]. In
in free-particle Fock-space sectors. The Fock-space expaffis paper, we show how to incorporate particle masses non-
sion will rapidly converge if the Hamiltonian satisfies certain Perturbatively as a necessary step toward a treatment of full
conditions[1]. The Hamiltonian can then be used to solve forQCD.
approximate hadron states.

Inspired by the work of Dysom2], Wilson [3], Glazek Il. REVIEW OF GENERAL FORMALISM

and Wilson[4], and Wegnet5], significant work has been In this section we introduce some of the notation devel-

done to perturbatively derive light-front Hamiltonians that yheq in Ref[1] and outline the method. The formalism that
satisfy these conditions in the full Fock-space, neglectings necessary for a detailed understanding of this method but
zero modeg6—13. The method developed by Allen and that we do not repeat in this paper can be found in this earlier
Perry[1] includes the scale dependence of the coupling angyork. This includes the use of a unitary transformation to
can be used to systematically renormalize light-front Hamil-qetermine how the Hamiltonian changes with the cufbif
tonians, fixing all noncanonical operators, in principle, to allthe yse of physical principles to restrict the form of the
orders. . . Hamiltonian, and the details of how to compute matrix ele-
In this method the theory is regulated by placing on thements of the Hamiltonian.
Hamiltonian a smooth cutoff on change in free mass. The e want to find the regulated invariant-mass operator,
cutoff violates several physical principles, preventing renor-a42(g, ,m,A), which is trivially related to the Hamiltonian.

malization exclusively through the redefinition of masses angt can be split into a free pattvhich contains implicit mass
canonical couplings. Renormalization must be completed byependendeand an interacting part:

requiring the Hamiltonian to produce cutoff-independent

physical quantities, and by requiring it to obey the physical M?(g, ,m,A)=Mf2,ee+ Mﬁn(gA MA). (1)
principles of the theory that are not violated by the cutoff.

These requirements completely fix the Hamiltonian so that iSjnce the method treatsflﬁn(gA ,m,A) perturbatively, we
will give results consistent with all the physical principles of pyt the particle-mass term in2,,, to treat it nonperturba-
the theory, even those violated by the cutoff. The most POWsively: however,Mﬁ,t(gA ,m,A) will still have mass depen-

erful characteristic of this approach is that it systematicallydence The matrix elements 8f2(g, ,m,A) are written
“repairs” the theory and retains only the fundamental pa- ' A

rameters of the theory. 2 _ 2 2
We generalize thisymethod of renormalization to include (FIM(ga,m,A)[1) = (F[ Mied ) +(F[Min(ga ,m A1)
particle masses and demonstrate it using masgivéheory — M§<F|I>+e‘A§I’A4
in 5+ 1 dimensions. This theory is asymptotically free and
X(FIV(gx,m A1), 2)
*Email address: kylin@mps.ohio-state.edu where [F) and|l) are eigenstates of the free invariant-mass
"Email address: allen@mps.ohio-state.edu operator with eigenvalues!Z and M?, andAg, is the dif-
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part of the invariant-mass operator with the Gaussian cutof§traightforward. In Secs. Il B and Il C, we present the ex-
factor removed and is called the “reduced interaction.” With pressions for the matrix elements of{}(m,A) and
light masses\g will be small in a limited part of the phase v{)(m), respectively. We also qualitatively discuss the ad-

space. This means there will be nonperturbative effects thafitional steps that are required to interpret and use them in a
must be dealt with through the diagonalization of the massnassive theory.

operator rather than its perturbative renormalization.
We expandV(g, ,m,A) in powers of the running cou-

pling, g, : A. Coupling
. The canonical definition of the coupling is
V(QA,m,A):er gV (m,A), 3 g=[647°p; 5¥(p1—P2—P3)] N bachs| Mzl b p,=ps-
(6)

where V() is the canonical interaction and the

V('=2)(m,A)’s are noncanonical interactions. These noncain the massive theory, we choose

nonical operators can be thought of as counterterms in a

traditional approach. Note that, implicitly depends omm. m*
We use a unitary transformation to relatd?(g, ,m,A) to gr=[647p; 5(5)(p1—pz—p3)]‘1exn( A
M?(g,,m,A"), whereA’>A. This yields the relation

—_ =

X<¢2¢3|M2(g/\ 1m1A)|¢1>|p2:p3
VO(m,A) = VO (m,A") =V (m,A,A")
- =[647°p; 8°/(p1—p—p3)] "
=2, BV mA, X(padalV(gr M A)|b1)lp, = ps Y]

(4)

wheresV((m,A,A’) is theO(g),,) change in the reduce
interaction and thé, _s¢'s are functions ofm, A, and A’
that contain information on the scale dependence of the co
pling. Since the scale dependence of the reduced interacti
comes fromg, and theV()(m,A)’s [See Eq.3)], Eq. (4)
simply states that if we subtract fro@Vv{)(m,A,A’) the
contribution due to the scale dependence of the coupling,

then we are left with the contribution due to the scale depen- B. Cutoff-dependent contributions to V(" (m,A)
dence of thev()(m,A)’s.

which differs from the definition in the massless theory by
d the factor ex@(m* A#)). This choice of coupling cancels a
cutoff factor due to the presence of the mass and allows us to
closely follow the formalism developed in the massless
gheory. In particular, the expressions for the matrix elements
or} V(C%(m,A) and Vg,)(m) presented below have the same
form as those derived in Ref1].

. . Momentum conservation implies that any matrix element
If there is a part ofv("/(m,A) that is independent of the ¢ V(m,A) contains a sum of terms, each with a unique
cutoff, it will car_mel on the !eﬁ—hand—side of E¢d). For this product (’)f momentum-conserving fuﬁctions. Assuming
reason, we spliV()(m,A) into a part that depends on the ot approximate transverse locality is maintained, the coef-
cutoff, V,(m,A), and a part that is independent of the cut-ficient of each product ob functions can be written as an
off, V& (m): expansion in powers of transverse momenta. In masgive
theory, we can also make a generalized expansion in powers
VO(m,A)=VE(m,A)+VE (m). (5 and logarithms ofn. The scale dependence of any term in

o ) o this expansion has the form
This division can be made with no ambiguity because we are
B b
P
(X) : 8)

assuming approximate transverse locality. Solving for both 6-an, | M “«
vi(m,A) and V&)(m) is necessary to find the invariant- by
mass operator.

Im
"\

where N;,; is the total number of particles in the final and
lll. ADDITION OF PARTICLE MASSES initial states that participate in the interaction. Alspg, and
In our renormalized scalar theory is the physical par- 7 are non-tnefgtatlve Integers. Fort S|m.plr|1C|ty we dthpIay one
ticle mass to all orders in perturbation theory. In a confiningcomponen. ot transverse momentum,, NOWEVer, the gen-
eral form includes a product of all transverse components

theorym would be considered the particle mass in the zero-

coupling limit. Since the mass is being treated nonperturbaf-rom all particles. In principle, the introduction of a particle

tively, it must be included in the free part g#2(g, ,m,A) mass allows any function af/A to appear. However, to

3 .
in Eq. (1). This leads to an altered unitary transformation and”(91) athe only gxtra scale dependence comes in the form
fundamental changes in the renormalization procedure.  (M/A)“[In(M/A)}". If =0 and

The changes in the procedure are discussed in the next
subsections. The redefinition of the couplit®ec. Il A) is 6—2N;;—a—y=0, 9
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the term is independent of the cutoff and is referred to as a
“cutoff-independent” contribution. These contributions are
discussed in the next subsection.

The expression for a matrix element‘fbgg(m,/\) is de-
rived from Eq.(4):

(FIVEY(m, M) [1y=| (F[sV(m,A,A")|1)

r-1
— 2 B s (FIVI9(m,A)|1)
s=2

A terms

(10

*“ A terms” means the terms in the momentum and mass
expansion that contail’ are to be removed from the ex-
pression in brackets. In terms that depend on positive powers
of A’, we do this by letting\'— 0, and in terms that depend
on negative powers ok’, we let A’ —oo.

C. Cutoff-independent contributions to V" (m,A)

Considering the condition in E9), only two-point and
three-point interactions can have cutoff-independent contri-
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FIG. 1. The third-order coefficient of the running coupling as a

function of the particle mass. Curves for various upper cutoffs with
fixed lower cutoff show the coupling is exponentially damped with
increasing mass.

butions. The lowest-order cutoff-independent three-point in- |nitially Eq. (11) looks useless becausécr,’(m) depends

3)

teraction isV(CI (m) and has not been explicitly computed in gn V(Cfl+1)(m) [which is inside an integral iV *?)], sug-
the massless or massive theories. HoweWgf)(m) is the  gesting the theory must be solved to all orders simulta-
lowest-order cutoff-independent two-point interaction andneously. However, contributions to the reduced interaction
must be calculated before anything is calculated to third orfrom three-point interactions can only appear at odd orders,
der. and contributions from two-point interactions can appear
The matrix elements ot/g,)(m) are divided into two- only at even orders. Thus, in the massless theory, this appar-
point and three-point contributions, and are given by the exent problem does not manifest itself because there are no
pression cutoff-independent two-point interactions. In the massive
theory, although there are cutoff-independent two-point in-

(Flv(cr,)(m)|l>=i[(FMV“”)(m AADI teractions, it is possible to solve fat2)(m) and V&) (m)
B2 n

r+1 3 point 0.06
B - 3 -
—Z Br+25,s<F|V(r+25)(m)|l>} & o) gi = 51?),”
s=3 mOp? term = o oO y= 1
1 = oo04f o o 2 _
<» OO o) A = 20
2 ’ S ] (o]
+ B (FlsV"2(m, A, A1) qsoor OOO O, |
’ |3 o Ada o O %
' S/ a4 ag (o)
r+1 2 point %Zbo O‘qﬂ(gn ?nﬂﬂm
_z Br+2—ss<F|V(r+2_s)(m)||> o %
s=3 ' 2 © L 4 .
m< term @N *
=l -002 | . * .
(11 ., .
*
Here, “m°p? term” and “m? term” means expand the term 004 1 e o ¢ M/A=0.005 1
in brackets in powers of external transverse momenta and in ’0’ * o m/A=0335
powers and logs aofn, and keep only the term that is propor- -0.06 [ *o® @ m/A=0545 A
tional to m°p® or m?, respectively The removal ofA and : : : :
A’ dependence is guaranteed by construction. 0 02 OITE /A 0.6 0.8
1

FIG. 2. The matrix element of the noncanonical part of the
The two-point contribution is independentdf because of clus-  invariant-mass operator fab; — ¢, 5 versus the magnitude of the
ter decomposition, transverse rotational invariance, and boost irtransverse momentum in the center-of-momentum frayris. the
variance. longitudinal momentum fraction carried by particle 2.
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simultaneously, without considering higher orders. Thiselement(¢,¢s| VP (M, A,A")|¢1)|p,-p,). Figure 1 shows

even-order/odd-order solution pattern can be extended to aljoy C,(m,A,A’) depends on the mass. The running of the
orders. o coupling is exponentially damped as the mass grows since
Including self-energy contributions, the theory we want tohe cutoff inhibits production of intermediate particles. The
describe contains particles of mass We can simplify the  gifference between the values of the running coupling at two
problem by using this fact instead of using E#1) to solve  gifferent scales increases as the two scales are separated.

for the even-ordeV{)(m)’s. We do this by forcing the com-  This is shown by the larger magnitude 65(m,A,A’) as
pletely disconnected parts of the forwaFematrix elements  the separation betweeh and A’ grows.

and final states that have the same number of partic®® 5, is not attempted. However, calculating the matrix ele-
n mome(n)tum-conservm@ functions) This fixes the even- ment(¢2¢3|v(033(m A)|,) gives the relative sizes of the

r L H H H 1 !
order V¢i(m)’s since they only involve mtera)ctlon_s 0N noncanonical interactions and the canonical interaction.
single particle I|n3es. This allows us to ??"CUWg (M) in- Their relative magnitudes are similar to those in Réf,
dependently o¥/{(m). This extra condition can be used to suggesting that an expansion of the reduced interaction in

fix all even-order\/g,)(m)’s. powers of the running coupling is valid through third order.
Figure 2 shows how the noncanonical part of the matrix
IV. RESULTS element of the invariant-mass operator for the interaction

o _ _ $1— P53 depends on the magnitude of the transverse mo-
The coupling in this theory runs at third order. We canmentum in the center-of-momentum frame. Increasing the

compare the coupling at two different scalédsand A": transverse momentum in the center-of-momentum frame in-
@ creases the free mass of the system.
ga=0ar+ 2, g5, Co(mA,A). (12)
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