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Systematic renormalization in Hamiltonian light-front field theory: The massive generalization

Roger D. Kylin,* Brent H. Allen,† and Robert J. Perry‡
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~Received 10 December 1998; published 18 August 1999!

Hamiltonian light-front field theory can be used to solve for hadron states in QCD. To this end, a method has
been developed for systematic renormalization of Hamiltonian light-front field theories, with the hope of
applying the method to QCD. It assumed massless particles, so its immediate application to QCD is limited to
gluon states or states where quark masses can be neglected. This paper builds on the previous work by
including particle masses nonperturbatively, which is necessary for a full treatment of QCD. We show that
several subtle new issues are encountered when including masses nonperturbatively. The method with masses
is algebraically and conceptually more difficult; however, we focus on how the methods differ. We demon-
strate the method using massivef3 theory in 511 dimensions, which has important similarities to QCD.
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I. INTRODUCTION

The use of a Hamiltonian light-front formalism may sim
plify the solution of quantum chromodynamics~QCD! by
allowing us to make a convergent expansion of hadron st
in free-particle Fock-space sectors. The Fock-space ex
sion will rapidly converge if the Hamiltonian satisfies certa
conditions@1#. The Hamiltonian can then be used to solve
approximate hadron states.

Inspired by the work of Dyson@2#, Wilson @3#, Glazek
and Wilson@4#, and Wegner@5#, significant work has been
done to perturbatively derive light-front Hamiltonians th
satisfy these conditions in the full Fock-space, neglect
zero modes@6–13#. The method developed by Allen an
Perry @1# includes the scale dependence of the coupling
can be used to systematically renormalize light-front Ham
tonians, fixing all noncanonical operators, in principle, to
orders.

In this method the theory is regulated by placing on
Hamiltonian a smooth cutoff on change in free mass. T
cutoff violates several physical principles, preventing ren
malization exclusively through the redefinition of masses a
canonical couplings. Renormalization must be completed
requiring the Hamiltonian to produce cutoff-independe
physical quantities, and by requiring it to obey the physi
principles of the theory that are not violated by the cuto
These requirements completely fix the Hamiltonian so tha
will give results consistent with all the physical principles
the theory, even those violated by the cutoff. The most po
erful characteristic of this approach is that it systematica
‘‘repairs’’ the theory and retains only the fundamental p
rameters of the theory.

We generalize this method of renormalization to inclu
particle masses and demonstrate it using massivef3 theory
in 511 dimensions. This theory is asymptotically free a
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its diagram structure is similar to QCD, which make it
good perturbative development ground. It is straightforwa
to extend the method for massless theories developed in
@1# to calculate QCD quantities for which particle masses
unimportant, such as the low-lying glueball spectrum@14#. In
this paper, we show how to incorporate particle masses n
perturbatively as a necessary step toward a treatment of
QCD.

II. REVIEW OF GENERAL FORMALISM

In this section we introduce some of the notation dev
oped in Ref.@1# and outline the method. The formalism th
is necessary for a detailed understanding of this method
that we do not repeat in this paper can be found in this ea
work. This includes the use of a unitary transformation
determine how the Hamiltonian changes with the cutoff@5#,
the use of physical principles to restrict the form of t
Hamiltonian, and the details of how to compute matrix e
ments of the Hamiltonian.

We want to find the regulated invariant-mass opera
M2(gL ,m,L), which is trivially related to the Hamiltonian
It can be split into a free part~which contains implicit mass
dependence! and an interacting part:

M2~gL ,m,L!5Mfree
2 1Mint

2 ~gL ,m,L!. ~1!

Since the method treatsMint
2 (gL ,m,L) perturbatively, we

put the particle-mass term inMfree
2 , to treat it nonperturba-

tively; however,Mint
2 (gL ,m,L) will still have mass depen-

dence. The matrix elements ofM2(gL ,m,L) are written

^FuM2~gL ,m,L!uI &5^FuMfree
2 uI &1^FuMint

2 ~gL ,m,L!uI &

5MF
2^FuI &1e2DFI

2 /L4

3^FuV~gL ,m,L!uI &, ~2!

where uF& and uI& are eigenstates of the free invariant-ma
operator with eigenvaluesMF

2 and MI
2, andDFI is the dif-

ference of these eigenvalues.V(gL ,m,L) is the interacting
©1999 The American Physical Society04-1
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BRIEF REPORTS PHYSICAL REVIEW D 60 067704
part of the invariant-mass operator with the Gaussian cu
factor removed and is called the ‘‘reduced interaction.’’ W
light massesDFI will be small in a limited part of the phas
space. This means there will be nonperturbative effects
must be dealt with through the diagonalization of the m
operator rather than its perturbative renormalization.

We expandV(gL ,m,L) in powers of the running cou
pling, gL :

V~gL ,m,L!5(
r 51

`

gL
r V~r !~m,L!, ~3!

where V(1) is the canonical interaction and th
V(r>2)(m,L)’s are noncanonical interactions. These non
nonical operators can be thought of as counterterms
traditional approach. Note thatgL implicitly depends onm.
We use a unitary transformation to relateM2(gL ,m,L) to
M2(gL8 ,m,L8), whereL8.L. This yields the relation

V~r !~m,L!2V~r !~m,L8!5dV~r !~m,L,L8!

2(
s52

r 21

Br 2s,sV
~r 2s!~m,L!,

~4!

wheredV(r )(m,L,L8) is theO(gL8
r ) change in the reduce

interaction and theBr 2s,s’s are functions ofm, L, and L8
that contain information on the scale dependence of the c
pling. Since the scale dependence of the reduced interac
comes fromgL and theV(r )(m,L)’s @See Eq.~3!#, Eq. ~4!
simply states that if we subtract fromdV(r )(m,L,L8) the
contribution due to the scale dependence of the coupl
then we are left with the contribution due to the scale dep
dence of theV(r )(m,L)’s.

If there is a part ofV(r )(m,L) that is independent of the
cutoff, it will cancel on the left-hand-side of Eq.~4!. For this
reason, we splitV(r )(m,L) into a part that depends on th
cutoff, VCD

(r ) (m,L), and a part that is independent of the cu
off, VCI

(r )(m):

V~r !~m,L!5VCD
~r ! ~m,L!1VCI

~r !~m!. ~5!

This division can be made with no ambiguity because we
assuming approximate transverse locality. Solving for b
VCD

(r ) (m,L) and VCI
(r )(m) is necessary to find the invarian

mass operator.

III. ADDITION OF PARTICLE MASSES

In our renormalized scalar theorym is the physical par-
ticle mass to all orders in perturbation theory. In a confin
theorym would be considered the particle mass in the ze
coupling limit. Since the mass is being treated nonpertur
tively, it must be included in the free part ofM2(gL ,m,L)
in Eq. ~1!. This leads to an altered unitary transformation a
fundamental changes in the renormalization procedure.

The changes in the procedure are discussed in the
subsections. The redefinition of the coupling~Sec. III A! is
06770
ff

at
s

-
a

u-
on

g,
-

-

re
h

g
-

a-

d

xt

straightforward. In Secs. III B and III C, we present the e
pressions for the matrix elements ofVCD

(r ) (m,L) and
VCI

(r )(m), respectively. We also qualitatively discuss the a
ditional steps that are required to interpret and use them
massive theory.

A. Coupling

The canonical definition of the coupling is

g5@64p5p1
1d~5!~p12p22p3!#21^f2f3uMcan

2 uf1&up25p3
.

~6!

In the massive theory, we choose

gL5@64p5p1
1d~5!~p12p22p3!#21 expS 9

m4

L4D
3^f2f3uM2~gL ,m,L!uf1&up25p3

5@64p5p1
1d~5!~p12p22p3!#21

3^f2f3uV~gL ,m,L!uf1&up25p3
, ~7!

which differs from the definition in the massless theory
the factor exp„9(m4/L4)…. This choice of coupling cancels
cutoff factor due to the presence of the mass and allows u
closely follow the formalism developed in the massle
theory. In particular, the expressions for the matrix eleme
of VCD

(r ) (m,L) and VCI
(r )(m) presented below have the sam

form as those derived in Ref.@1#.

B. Cutoff-dependent contributions to V „r …
„m,L…

Momentum conservation implies that any matrix eleme
of V(r )(m,L) contains a sum of terms, each with a uniq
product of momentum-conservingd functions. Assuming
that approximate transverse locality is maintained, the co
ficient of each product ofd functions can be written as a
expansion in powers of transverse momenta. In massivef3

theory, we can also make a generalized expansion in pow
and logarithms ofm. The scale dependence of any term
this expansion has the form

L622NintS m

L D aF ln
m

LGbS p'

L D g

, ~8!

whereNint is the total number of particles in the final an
initial states that participate in the interaction. Alsoa, b, and
g are non-negative integers. For simplicity we display o
component of transverse momentum,p' ; however, the gen-
eral form includes a product of all transverse compone
from all particles. In principle, the introduction of a partic
mass allows any function ofm/L to appear. However, to
O(gL

3 ) the only extra scale dependence comes in the fo
(m/L)a@ ln(m/L)#b. If b50 and

622Nint2a2g50, ~9!
4-2
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BRIEF REPORTS PHYSICAL REVIEW D 60 067704
the term is independent of the cutoff and is referred to a
‘‘cutoff-independent’’ contribution. These contributions a
discussed in the next subsection.

The expression for a matrix element ofVCD
(r ) (m,L) is de-

rived from Eq.~4!:

^FuVCD
~r ! ~m,L!uI &5F ^FudV~r !~m,L,L8!uI &

2(
s52

r 21

Br 2s,s^FuV~r 2s!~m,L!uI &G
L terms

.

~10!

‘‘ L terms’’ means the terms in the momentum and m
expansion that containL8 are to be removed from the ex
pression in brackets. In terms that depend on positive pow
of L8, we do this by lettingL8˜0, and in terms that depen
on negative powers ofL8, we letL8˜`.

C. Cutoff-independent contributions to V „r …
„m,L…

Considering the condition in Eq.~9!, only two-point and
three-point interactions can have cutoff-independent con
butions. The lowest-order cutoff-independent three-point
teraction isVCI

(3)(m) and has not been explicitly computed
the massless or massive theories. However,VCI

(2)(m) is the
lowest-order cutoff-independent two-point interaction a
must be calculated before anything is calculated to third
der.

The matrix elements ofVCI
(r )(m) are divided into two-

point and three-point contributions, and are given by the
pression

^FuVCI
~r !~m!uI &5

1

Br ,2
F ^FudV~r 12!~m,L,L8!uI &

2(
s53

r 11

Br 122s,s^FuV~r 122s!~m!uI &G
m0pW

1
0 term

3 point

1
1

Br ,2
F ^FudV~r 12!~m,L,L8!uI &

2(
s53

r 11

Br 122s,s^FuV~r 122s!~m!uI &G
m2 term

2 point

.

~11!

Here, ‘‘m0pW'
0 term’’ and ‘‘m2 term’’ means expand the term

in brackets in powers of external transverse momenta an
powers and logs ofm, and keep only the term that is propo
tional to m0pW'

0 or m2, respectively.1 The removal ofL and
L8 dependence is guaranteed by construction.

1The two-point contribution is independent ofpW' because of clus-
ter decomposition, transverse rotational invariance, and boos
variance.
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Initially Eq. ~11! looks useless becauseVCI
(r )(m) depends

on VCI
(r 11)(m) @which is inside an integral indV(r 12)#, sug-

gesting the theory must be solved to all orders simu
neously. However, contributions to the reduced interact
from three-point interactions can only appear at odd ord
and contributions from two-point interactions can appe
only at even orders. Thus, in the massless theory, this ap
ent problem does not manifest itself because there are
cutoff-independent two-point interactions. In the mass
theory, although there are cutoff-independent two-point
teractions, it is possible to solve forVCI

(2)(m) and VCI
(3)(m)

n-

FIG. 1. The third-order coefficient of the running coupling as
function of the particle mass. Curves for various upper cutoffs w
fixed lower cutoff show the coupling is exponentially damped w
increasing mass.

FIG. 2. The matrix element of the noncanonical part of t
invariant-mass operator forf1˜f2f3 versus the magnitude of th
transverse momentum in the center-of-momentum frame.y is the
longitudinal momentum fraction carried by particle 2.
4-3



hi
o

to

-

l

n

to

an

b

he
ince
he
wo
ated.

le-
e
on.

n in
r.

trix
ion
o-

the
in-

ce

BRIEF REPORTS PHYSICAL REVIEW D 60 067704
simultaneously, without considering higher orders. T
even-order/odd-order solution pattern can be extended t
orders.

Including self-energy contributions, the theory we want
describe contains particles of massm. We can simplify the
problem by using this fact instead of using Eq.~11! to solve
for the even-orderVCI

(r )(m)’s. We do this by forcing the com
pletely disconnected parts of the forwardT-matrix elements
to be zero.~This part of aT-matrix element contains initia
and final states that have the same number of particlesn and
n momentum-conservingd functions.! This fixes the even-
order VCI

(r )(m)’s since they only involve interactions o
single particle lines. This allows us to calculateVCI

(2)(m) in-
dependently ofVCI

(3)(m). This extra condition can be used
fix all even-orderVCI

(r )(m)’s.

IV. RESULTS

The coupling in this theory runs at third order. We c
compare the coupling at two different scales,L andL8:

gL5gL81(
s53

`

gL8
s Cs~m,L,L8!. ~12!

We can determine how the coupling runs at third order
solving forC3(m,L,L8) ~which is proportional to the matrix
g,

,

06770
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element̂ f2f3udV(3)(m,L,L8)uf1&up25p3
). Figure 1 shows

how C3(m,L,L8) depends on the mass. The running of t
coupling is exponentially damped as the mass grows s
the cutoff inhibits production of intermediate particles. T
difference between the values of the running coupling at t
different scales increases as the two scales are separ
This is shown by the larger magnitude ofC3(m,L,L8) as
the separation betweenL andL8 grows.

Determining VCI
(3)(m) requires a fifth-order calculation

and is not attempted. However, calculating the matrix e
ment ^f2f3uVCD

(3)(m,L)uf1& gives the relative sizes of th
noncanonical interactions and the canonical interacti
Their relative magnitudes are similar to those in Ref.@1#,
suggesting that an expansion of the reduced interactio
powers of the running coupling is valid through third orde

Figure 2 shows how the noncanonical part of the ma
element of the invariant-mass operator for the interact
f1˜f2f3 depends on the magnitude of the transverse m
mentum in the center-of-momentum frame. Increasing
transverse momentum in the center-of-momentum frame
creases the free mass of the system.
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